Что такое эл ток определение
Перейти к содержимому

Что такое эл ток определение

  • автор:

Что такое эл ток определение

Электрическим током называют упорядоченное движение заряженных частиц или заряженных макроскопических тел. Различают два вида электрических токов – токи проводимости и конвекционные токи.

Током проводимости называют упорядоченное движение в веществе или вакууме свободных заряженных частиц – электронов проводимости (в металлах), положительных и отрицательных ионов (в электролитах), электронов и положительных ионов (в газах), электронов проводимости и дырок (в полупроводниках), пучков электронов (в вакууме). Этот ток обусловлен тем, что в проводнике под действием приложенного электрического поля напряженностью происходит перемещение свободных электрических зарядов (рис. 2.1, а).
Конвекционным электрическим током называют ток, обусловленный перемещением в пространстве заряженного макроскопического тела (рис. 2.1, б).
Для возникновения и поддержания электрического тока проводимости необходимы следующие условия:
1) наличие свободных носителей тока (свободных зарядов);
2) наличие электрического поля, создающего упорядоченное движение свободных зарядов;
3) на свободные заряды, помимо кулоновских сил, должны действовать сторонние силы неэлектрической природы; эти силы создаются различными источниками тока (гальваническими элементами, аккумуляторами, электрическими генераторами и др.);
4) цепь электрического тока должна быть замкнутой.
За направление электрического тока условно принимают направление движения положительных зарядов, образующих этот ток.
Количественной мерой электрического тока является сила тока I — скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение S проводника в единицу времени:

Ток, сила и направление которого не изменяются с течением времени, называется постоянным (рис. 2.2, а). Для постоянного тока

Электрический ток, изменяющийся с течением времени, называется переменным. Примером такого тока является синусоидальный электрический ток, применяемый в электротехнике и электроэнергетике (рис. 2.2, б).
Единица силы тока – ампер (А). В СИ определение единицы силы тока формулируется следующим образом: 1 А – это сила такого постоянного тока, который при протекании по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малого поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, создает между этими проводниками силу, равную на каждый метр длины.
Для характеристики направления электрического тока проводимости в разных точках поверхности проводника и распределения силы тока по этой поверхности вводится плотность тока.
Плотностью тока называют векторную физическую величину, совпадающую с направлением тока в рассматриваемой точке и численно равную отношению силы тока dI , проходящего через элементарную поверхность, перпендикулярной направлению тока, к площади этой поверхности:

Единица плотности тока – ампер на квадратный метр (А/м 2 ).
Плотность постоянного электрического тока одинакова по всему поперечному сечению однородного проводника. Поэтому для постоянного тока в однородном проводнике с площадью поперечного сечения S сила тока равна

Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение зарядов от точек с большим потенциалом к точкам с меньшим потенциалом. Это приводит к выравниванию потенциалов во всех точках цепи и к исчезновению тока. Поэтому для поддержания постоянного электрического тока в цепи необходимо наличие устройства, способного создавать и поддерживать разность потенциалов за счет работы некоторых сторонних сил. Такие устройства называют источниками тока.
Под действием сторонних сил носители тока движутся внутри источника электрической энергии против сил электростатического поля (против кулоновских сил, вызывающих соединение разноименных зарядов, а следовательно, выравнивание потенциалов и исчезновение тока), так что на концах внешней цепи поддерживается постоянная разность потенциалов и в цепи протекает постоянный электрический ток.
Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой сторонних сил при перемещении единичного положительного заряда, называется электродвижущей силой (ЭДС) источника:
(2.3)
Единица ЭДС – вольт (В).
Сторонняя сила, действующая на заряд , может быть выражена через напряженность поля сторонних сил

Тогда работа сторонних сил по перемещению заряда на замкнутом участке цепи будет равна:

Разделив (2.4) на и учитывая (2.3), получим выражение для ЭДС, действующей в цепи:

Электрический ток

Электри́ческий ток — упорядоченное некомпенсированное движение свободных электрически заряженных частиц под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

При изучении электрического тока, было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

В медицине электрический ток используют в реанимации, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Характеристики

Следует исправить раздел согласно стилистическим правилам Википедии.

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счет упорядоченного движения меньше чем на 0,1 мм. [1] Несмотря на это, скорость распространения собственно электрического тока равна скорости света, то есть скорости распространения фронта электромагнитной волны.

Различают переменный (англ. alternating current , AC), постоянный (англ. direct current , DC) и пульсирующий токи, а так же их всевозможные комбинации.

  • Постоянный ток — ток, направление и величина которого слабо меняются во времени.
  • Переменный ток — это ток, величина и (или) направление которого меняются во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
    Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Переменный ток высокой частоты проходит по поверхности проводника, обтекая его со всех сторон. Этот эффект называется скин-эффектом.

Сила и плотность тока

Основная статья: Сила тока

Силой тока называется физическая величина, равная отношению количества заряда, прошедшего за некоторое время через поперечное сечение проводника, к величине этого промежутка времени.

По закону Ома сила тока Iдля участка цепи прямо пропорциональна приложенному напряжению Uк участку цепи и обратно пропорциональна сопротивлению Rпроводника этого участка цепи :

I = \frac<U></p>
<p>» width=»» height=»» /></p>
<p>Плотностью тока называется вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярную направлению тока, к величине этой площадки, а направление вектора совпадает с направлением движения положительного заряда в токе.</p>
<p>Согласно закону Ома плотность тока в среде <img decoding=:

\vec<j></p>
<p> = \sigma\vec» width=»» height=»» /></p>
<h4>Мощность</h4>
<p>Основная статья: <b>Закон Джоуля — Ленца</b></p>
<p>При наличии тока в проводнике совершается работа против сил сопротивления. Эта работа выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:</p>
<p><img decoding=определяется скалярным произведением вектора плотности тока \vec<j>» width=»» height=»» /> и вектора напряжённости электрического поля <img decoding=

\vec\right) = \sigma E^2 = \frac» width=»» height=»» />

Объёмная мощность измеряется в ваттах на кубический метр.

Ток смещения

Основная статья: Ток смещения (электродинамика)

Иногда для удобства вводят понятие тока смещения. По определению, плотность тока смещения \vec<j_D>» width=»» height=»» /> — это векторная величина, равная быстроте изменения электрического поля <img decoding=

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения в конденсаторе определяется по формуле:

I_D = \frac</p>
<p>Q>t> = -C\fracU>t>» width=»» height=»» />,</p>
<p>где <img decoding=— заряд на обкладках конденсатора, U— разность потенциалов между обкладками, C— ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Электробезопасность

Основная статья: Электробезопасность

Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • безопасным считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА;
  • минимально ощутимый человеком переменный ток составляет около 1 мА;
  • неотпускающим называется ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10-15 мА, для постоянного — 50 мА;
  • фибрилляционным порогом называется сила переменного тока около 100 мА, воздействие которого дольше 0.5 секунд с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

См. также

  • Блуждающие токи
  • Ток утечки
  • Зануление
  • Заземление
  • Электрический заряд
  • Электрический разряд
  • Напряжение
  • Молния

Ссылки

Примечания

  1. Электрический ток в металлах

Электрический ток

Электрическим током называется упорядоченный поток отрицательно заряженных элементарных частиц – электронов. Электрический ток необходим для освещения домов и улиц, обеспечения работоспособности бытовой и производственной техники, движения городского и магистрального электротранспорта и.т.п.

Понятие об электрическом токе

  • Rн – сопротивление нагрузки
  • A – индикатор
  • К – коммутатор цепи

Ток – количество зарядов прошедших в единицу времени через поперечное сечение проводника.

Исторически принято считать, что ток в замкнутой цепи, движется от положительного, к отрицательному полюсу источника питания.

  • I – сила тока
  • q – количество электричества
  • t – время

Единицу силы тока называют амперам А , по имени французского учёного Ампера.

1А = 10 3 мА = 10 6 мкА

Плотность электрического тока

Электрическому току присущ ряд физических характеристик, имеющих количественные значения, выражаемые в определенных единицах. Основными физическими характеристиками электротока являются его сила и мощность. Сила тока количественно выражается в амперах, а мощность тока – в ваттах. Не менее важной физической величиной считается векторная характеристика электрического тока, или плотность тока. В частности, понятием плотности тока пользуются при проектировании линий электропередач.

  • J – плотность электрического тока А / ММ 2
  • S – площадь поперечного сечения
  • I – ток

Постоянный и переменный ток

Электропитание всех электрических устройств осуществляется постоянным либо переменным током.

Электрический ток, направление и значение которого не меняются, называется постоянным.

Электрический ток, направление и значение которого способны изменяться называется переменным.

Электропитание многих электротехнических устройств осуществляется переменным током, изменение которого графически представлено в виде синусоиды.

Использование электрического тока

Можно с уверенностью констатировать, что самым великим достижением человечества является открытие электрического тока и его использование. От электрического тока зависят тепло и свет в домах, поступление информации из внешнего мира, общение людей, находящихся в различных точках планеты, и многое другое.

Современную жизнь невозможно представить без повсеместного наличия электричества. Электричество присутствует абсолютно во всех сферах жизнедеятельности людей: в промышленности и сельском хозяйстве, в науке и космосе.

Электричество также является неизменной составляющей повседневного быта человека. Такое повсеместное распространение электричества стало возможным благодаря его уникальным свойствам. Электрическая энергия может мгновенно передаваться на огромные расстояния и преобразовываться в различные виды энергий иного генезиса.

Основными потребителями электрической энергии являются промышленная и производственная сферы. При помощи электроэнергии приводятся в действие различные механизмы и устройства, осуществляются многоэтапные технологические процессы.

Невозможно переоценить роль электроэнергии в обеспечении работы транспорта. Практически полностью электрифицирован железнодорожный транспорт. Электрификация железнодорожного транспорта сыграла значительную роль в обеспечении пропускной способности дорог, увеличении скорости передвижения, снижении себестоимости пассажироперевозок, решении проблемы экономии топлива.

Наличие электричества является непременным условием обеспечения комфортных условий жизни людей. Вся бытовая техника: телевизоры, стиральные машины, микроволновые печи, нагревательные приборы – нашла свое место в жизни человека только благодаря развитию электротехнического производства.

Главенствующая роль электроэнергии в развитии цивилизации неоспорима. Нет такой области в жизни человечества, которая обходилась бы без потребления электрической энергии и альтернативу которой могла бы составить мускульная сила.

Электрический ток

Электрический ток — направленное (упорядоченное) движение частиц, носителей электрического заряда, в электромагнитном поле.

Что такое электрический ток в разных веществах? Примем, соответственно, движущиеся частицы:

  • в металлах — электроны,
  • в электролитах — ионы (катионы и анионы),
  • в газах — ионы и электроны,
  • в вакууме при определённых условиях — электроны,
  • в полупроводниках — дырки (электронно-дырочная проводимость).

Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля.

Электрический ток проявляется следующим образом:

  • нагревает проводники (явление не наблюдается в сверхпроводниках);
  • изменяет химический состав проводника (данное явление в первую очередь характерно для электролитов);
  • создает магнитное поле (проявляется у всех без исключения проводников).

Классификация

Постоянный и переменный ток

Если заряженные частицы движутся внутри макроскопических тел относительно той или иной среды, то такой ток называют электрический »ток проводимости». Если движутся макроскопические заряженные тела (например, заряженные капли дождя), то этот ток называют »конвекционным».

Токи различают на постоянный и переменный. Также существуют всевозможные разновидности переменного тока. При определении видов тока слово «электрический» опускают.

  • Постоянный ток — ток, направление и величина которого не меняются во времени. Может быть пульсирующий, например выпрямленный переменный, который является однонаправленным.
  • Переменный ток — электрический ток, изменяющийся во времени. Под переменным током понимают любой ток, не являющийся постоянным.
  • Периодический ток — электрический ток, мгновенные значения которого повторяются через равные интервалы времени в неизменной последовательности.
  • Синусоидальный ток — периодический электрический ток, являющийся синусоидальной функцией времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. Любой периодический несинусоидальный ток может быть представлен в виде комбинации синусоидальных гармонических составляющих (гармоник), имеющих соответствующие амплитуды, часто́ты и начальные фазы. В этом случае Электростатический потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется.
  • Квазистационарный ток — относительно медленно изменяющийся переменный ток, для мгновенных значений которого с достаточной точностью выполняются законы постоянных токов. Этими законами являются закон Ома, правила Кирхгофа и другие. Квазистационарный ток, так же как и постоянный ток, имеет одинаковую силу тока во всех сечениях неразветвлённой цепи. При расчёте цепей квазистационарного тока из-за возникающей э. д. с. индукции ёмкости и индуктивности учитываются как сосредоточенные параметры. Квазистационарными являются обычные промышленные токи, кроме токов в линиях дальних передач, в которых условие квазистационарности вдоль линии не выполняется.
  • Ток высокой частоты — переменный ток, (начиная с частоты приблизительно в десятки кГц), для которого становятся значимыми такие явления, которые являются либо полезными, определяющими его применение, либо вредными, против которых принимаются необходимые меры, как излучение электромагнитных волн и скин-эффект. Кроме того, если длина волны излучения переменного тока становится сравнимой с размерами элементов электрической цепи, то нарушается условие квазистационарности, что требует особых подходов к расчёту и проектированию таких цепей.
  • Пульсирующий ток — это периодический электрический ток, среднее значение которого за период отлично от нуля.
  • Однонаправленный ток — это электрический ток, не изменяющий своего направления.

Вихревые токи

Вихревые токи Фуко

Вихревые токи ( или токи Фуко) — замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитный поток, поэтому вихревые токи являются индукционными токами. Чем быстрее изменяется магнитный поток, тем сильнее вихревые токи. Вихревые токи не текут по определённым путям в проводах, а замыкаясь в проводнике образуют вихреобразные контуры.

Существование вихревых токов приводит к скин-эффекту, то есть к тому, что переменный электрический ток и магнитный поток распространяются в основном в поверхностном слое проводника. Нагрев вихревыми токами проводников приводит к потерям энергии, особенно в сердечниках катушек переменного тока. Для уменьшения потерь энергии на вихревые токи применяют деление магнитопроводов переменного тока на отдельные пластины, изолированные друг от друга и расположенные перпендикулярно направлению вихревых токов, что ограничивает возможные контуры их путей и сильно уменьшает величину этих токов. При очень высоких частотах вместо ферромагнетиков для магнитопроводов применяют магнитодиэлектрики, в которых из-за очень большого сопротивления вихревые токи практически не возникают.

Характеристики

Исторически принято, что »’направление тока»’ совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения заряженных частиц.

Дрейфовая скорость электронов

Дрейфовая скорость направленного движения частиц в проводниках, вызванного внешним полем, зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. За 1 секунду электроны в проводнике перемещаются за счёт упорядоченного движения меньше чем на 0,1 мм. Несмотря на это, скорость распространения собственно электрического тока равна скорости света (скорости распространения фронта электромагнитной волны). То есть то место, где электроны изменяют скорость своего движения после изменения напряжения, перемещается со скоростью распространения электромагнитных колебаний.

Сила и плотность тока

Электрический ток имеет количественные характеристики: скалярную — силу тока, и векторную — плотность тока.

Сила тока — физическая величина, равная отношению количества заряда

, прошедшего за некоторое время

через поперечное сечение проводника, к величине этого промежутка времени.

Сила тока в СИ измеряется в амперах (международное и русское обозначение: A).

По закону Ома сила тока

на участке цепи прямо пропорциональна электрическому напряжению

, приложенному к этому участку цепи, и обратно пропорциональна его сопротивлению

Если на участке цепи электрический ток не постоянный, то напряжение и сила тока постоянно изменяется, при этом у обычного переменного тока средние значения напряжения и силы тока равны нулю. Однако средняя мощность выделяемого при этом тепла нулю не равна.

Поэтому применяют следующие понятия:

  • мгновенные напряжение и сила тока, то есть действующие в данный момент времени.
  • амплитудные напряжение и сила тока, то есть максимальные абсолютные значения
  • эффективные (действующие) напряжение и сила тока определяются тепловым действием тока, то есть имеют те же значения, которые они имеют у постоянного тока с таким же тепловым эффектом.

Плотность тока — вектор, абсолютная величина которого равна отношению силы тока, протекающего через некоторое сечение проводника, перпендикулярное направлению тока, к площади этого сечения, а направление вектора совпадает с направлением движения положительных зарядов, образующих ток.

Согласно закону Ома в дифференциальной форме плотность тока в среде

пропорциональна напряжённости электрического поля

и проводимости среды

Мощность

При наличии тока в проводнике совершается работа против сил сопротивления. Электрическое сопротивление любого проводника состоит из двух составляющих:

  • активное сопротивление — сопротивление теплообразованию;
  • реактивное сопротивление — сопротивление, обусловленное передачей энергии электрическому или магнитному полю (и обратно).

Как правило, большая часть работы электрического тока выделяется в виде тепла. Мощностью тепловых потерь называется величина, равная количеству выделившегося тепла в единицу времени. Согласно закону Джоуля — Ленца мощность тепловых потерь в проводнике пропорциональна силе протекающего тока и приложенному напряжению:

Мощность измеряется в ваттах.

В сплошной среде объёмная мощность потерь

определяется скалярным произведением вектора плотности тока

и вектора напряжённости электрического поля

Объёмная мощность измеряется в ваттах на кубический метр.

Сопротивление излучению вызвано образованием электромагнитных волн вокруг проводника. Это сопротивление находится в сложной зависимости от формы и размеров проводника, от длины излучаемой волны. Для одиночного прямолинейного проводника, в котором везде ток одного направления и силы, и длина которых L значительно меньше длины излучаемой им электромагнитной волны

, зависимость сопротивления от длины волны и проводника относительно проста:

Наиболее применяемому электрическому току со стандартной частотой 50 »Гц» соответствует волна длиной около 6 тысяч километров, именно поэтому мощность излучения обычно пренебрежительно мала по сравнению с мощностью тепловых потерь. Однако, с увеличением частоты тока длина излучаемой волны уменьшается, соответственно возрастает мощность излучения. Проводник, способный излучать заметную энергию, называется антенной.

Частота

Понятие частоты относится к переменному току, периодически изменяющему силу и/или направление. Сюда же относится наиболее часто применяемый ток, изменяющийся по синусоидальному закону.

Период переменного тока — наименьший промежуток времени (выраженный в секундах), через который изменения силы тока (и напряжения) повторяются. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц (Гц) соответствует одному периоду в секунду.

Ток смещения

Иногда для удобства вводят понятие тока смещения. В уравнениях Максвелла ток смещения присутствует на равных правах с током, вызванным движением зарядов. Интенсивность магнитного поля зависит от полного электрического тока, равного сумме тока проводимости и тока смещения. По определению, плотность тока смещения

— векторная величина, пропорциональная скорости изменения электрического поля

Дело в том, что при изменении электрического поля, также как и при протекании тока, происходит генерация магнитного поля, что делает эти два процесса похожими друг на друга. Кроме того, изменение электрического поля обычно сопровождается переносом энергии. Например, при зарядке и разрядке конденсатора, несмотря на то, что между его обкладками не происходит движения заряженных частиц, говорят о протекании через него тока смещения, переносящего некоторую энергию и своеобразным образом замыкающего электрическую цепь. Ток смещения

в конденсаторе определяется по формуле:

— заряд на обкладках конденсатора,

— электрическое напряжение в между обкладками,

— электрическая ёмкость конденсатора.

Ток смещения не является электрическим током, поскольку не связан с перемещением электрического заряда.

Основные типы проводников

В отличие от диэлектриков в проводниках имеются свободные носители нескомпенсированных зарядов, которые под действием силы, как правило разности электрических потенциалов, приходят в движение и создают электрический ток. Вольтамперная характеристика (зависимость силы тока от напряжения) является важнейшей характеристикой проводника. Для металлических проводников и электролитов она имеет простейший вид: сила тока прямо пропорциональна напряжению (закон Ома).

Металлы — здесь носителями тока являются электроны проводимости, которые принято рассматривать как электронный газ, отчётливо проявляющий квантовые свойства вырожденного газа.

Плазма — ионизированный газ. Электрический заряд переносится ионами (положительными и отрицательными) и свободными электронами, которые образуются под действием излучения (ультрафиолетового, рентгеновского и других) и (или) нагревания.

Электролиты — жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. Ионы образуются в процессе электролитической диссоциации. При нагревании сопротивление электролитов падает из-за увеличения числа молекул, разложившихся на ионы. В результате прохождения тока через электролит ионы подходят к электродам и нейтрализуются, оседая на них. Законы электролиза Фарадея определяют массу вещества, выделившегося на электродах.

Существует также электрический ток электронов в вакууме, который используется в электронно-лучевых приборах.

Электрические токи в природе

Молния

Атмосферное электричество — электричество, которое содержится в воздухе. Впервые показал присутствие электричества в воздухе и объяснил причину грома и молнии Бенджамин Франклин.

В дальнейшем было установлено, что электричество накапливается в сгущении паров в верхних слоях атмосферы, и указаны следующие законы, которым следует атмосферное электричество:

  • при ясном небе, так же как и при облачном, электричество атмосферы всегда положительное, если на некотором расстоянии от места наблюдения не идёт дождь, град или снег;
  • напряжение электричества облаков становится достаточно сильным для выделения его из окружающей среды лишь тогда, когда облачные пары сгущаются в дождевые капли, доказательством чего может служить то, что разрядов молний не бывает без дождя, снега или града в месте наблюдения, исключая возвратный удар молнии;
  • атмосферное электричество увеличивается по мере возрастания влажности и достигает максимума при падении дождя, града и снега;
  • место, где идёт дождь, является резервуаром положительного электричества, окружённым поясом отрицательного, который, в свою очередь, заключён в пояс положительного. На границах этих поясов напряжение равно нулю.

Движение ионов под действием сил электрического поля формирует в атмосфере вертикальный ток проводимости со средней плотностью, равной около (2÷3)·10 −12 А/м².

Полный ток, текущий на всю поверхность Земли, при этом составляет приблизительно 1800 А.

Молния является естественным искровым электрическим разрядом. Была установлена электрическая природа полярных сияний. Огни святого Эльма — естественный коронный электрический разряд.

Биотоки — движение ионов и электронов играет весьма существенную роль во всех жизненных процессах. Создаваемый при этом биопотенциал существует как на внутриклеточном уровне, так и у отдельных частей тела и органов. Передача нервных импульсов происходит при помощи электрохимических сигналов. Некоторые животные (электрические скаты, электрический угорь) способны накапливать потенциал в несколько сот вольт и используют это для самозащиты.

Применение

При изучении электрического тока было обнаружено множество его свойств, которые позволили найти ему практическое применение в различных областях человеческой деятельности, и даже создать новые области, которые без существования электрического тока были бы невозможны. После того, как электрическому току нашли практическое применение, и по той причине, что электрический ток можно получать различными способами, в промышленной сфере возникло новое понятие — электроэнергетика.

Электрический ток используется как носитель сигналов разной сложности и видов в разных областях (телефон, радио, пульт управления, кнопка дверного замка и так далее).

В некоторых случаях появляются нежелательные электрические токи, например блуждающие токи или ток короткого замыкания.

Использование электрического тока как носителя энергии

  • получения механической энергии во всевозможных электродвигателях,
  • получения тепловой энергии в нагревательных приборах, электропечах, при электросварке,
  • получения световой энергии в осветительных и сигнальных приборах,
  • возбуждения электромагнитных колебаний высокой частоты, сверхвысокой частоты и радиоволн,
  • получения звука,
  • получения различных веществ путём электролиза, зарядка электрических аккумуляторов. Здесь электромагнитная энергия превращается в химическую,
  • создания магнитного поля (в электромагнитах).

Использование электрического тока в медицине

Электрофорез

  • диагностика — биотоки здоровых и больных органов различны, при этом бывает возможно определить болезнь, её причины и назначить лечение. Раздел физиологии, изучающий электрические явления в организме называется электрофизиология.
    • Электроэнцефалография — метод исследования функционального состояния головного мозга.
    • Электрокардиография — методика регистрации и исследования электрических полей при работе сердца.
    • Электрогастрография — метод исследования моторной деятельности желудка.
    • Электромиография — метод исследования биоэлектрических потенциалов, возникающих в скелетных мышцах.
  • Лечение и реанимация: электростимуляции определённых областей головного мозга; лечение болезнь болезни Паркинсона и эпилепсии, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии и иных сердечных аритмиях.

Электробезопасность

Предупреждение по электробезопасности

Включает в себя правовые, социально-экономические, организационно-технические, санитарно-гигиенические, лечебно-профилактические, реабилитационные и иные мероприятия. Правила электробезопасности регламентируются правовыми и техническими документами, нормативно-технической базой. Знание основ электробезопасности обязательно для персонала, обслуживающего электроустановки и электрооборудование. Тело человека является проводником электрического тока. Сопротивление человека при сухой и неповрежденной коже колеблется от 3 до 100 кОм.

Ток, пропущенный через организм человека или животного, производит следующие действия:

  • термическое (ожоги, нагрев и повреждение кровеносных сосудов);
  • электролитическое (разложение крови, нарушение физико-химического состава);
  • биологическое (раздражение и возбуждение тканей организма, судороги)
  • механическое (разрыв кровеносных сосудов под действием давления пара, полученного нагревом током крови)

Основным фактором, обуславливающим исход поражения током, является величина тока, проходящего через тело человека. По технике безопасности электрический ток классифицируется следующим образом:

  • »безопасным» считается ток, длительное прохождение которого через организм человека не причиняет ему вреда и не вызывает никаких ощущений, его величина не превышает 50 мкА (переменный ток 50 Гц) и 100 мкА постоянного тока;
  • »минимально ощутимый» человеком переменный ток составляет около 0,6—1,5 мА (переменный ток 50 Гц) и 5—7 мА постоянного тока;
  • пороговым »неотпускающим» называется минимальный ток такой силы, при которой человек уже неспособен усилием воли оторвать руки от токоведущей части. Для переменного тока это около 10—15 мА, для постоянного — 50—80 мА;
  • »фибрилляционным порогом» называется сила переменного тока (50 Гц) около 100 мА и 300 мА постоянного тока, воздействие которого дольше 0,5 с с большой вероятностью вызывает фибрилляцию сердечных мышц. Этот порог одновременно считается условно смертельным для человека.

В России в соответствии c Правилами технической эксплуатации электроустановок потребителей (Приказ Минэнерго РФ от 13.01.2003 № 6 «Об утверждении Правил технической эксплуатации электроустановок потребителей») и Правилами по охране труда при эксплуатации электроустановок (Приказ Минэнерго РФ от 27.12.2000 N 163 «Об утверждении Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок»), установлено 5 квалификационных групп по электробезопасности в зависимости от квалификации и стажа работника и напряжения электроустановок.

Примечания

  • Баумгарт К. К., Электрический ток.
  • А.С. Касаткин. Электротехника.
  • Ю.Г. Синдеев. Электротехника с элементами электроники.
  • Теоретические основы электротехники. Электрические цепи. Бессонов Л.А.

Что такое электрический ток — простыми словами

Посмотрите наши проекты за 2007-2018 г

Современную цивилизацию сегодня невозможно представить без электричества. Благодаря бесперебойной подаче электрического тока функционируют промышленные предприятия, освещаются улицы городов, обеспечивается горячая вода и тепло в домах. В то же время, даже при условии постоянного использования этого ресурса, для многих остается неясным, что представляет собой электрический ток, откуда он берется и как протекает, на каких физических законах основывается.

Основные определения электрического тока

Повсеместно используются два основных определения электротока:

  • Согласно классическому определению, электрический ток является направленным, строго упорядоченным движением заряженных частиц.
  • Согласно академической формулировке, электрическим током определяется скорость изменения заряда по мере течения определенного периода времени.

з указанных определений академическое применяется наиболее часто, так как в классическом определении отсутствует описание природы этого явления.

Электроэнергия. Что представляет собой электрическое сопротивление

Под электрической энергией подразумевается энергия, которая высвобождается во время движения потоков заряженных частиц. Источником электроэнергии может являться генератор или аккумуляторные батареи, а в качестве потребителей рассматриваются оборудование и приборы, подключенные к сети. Электричество применяется в быту для обеспечения питания электротехники и измеряется в кВт/ч (киловатт-час).

Сферы использования электрического тока

С момента своего раскрытия электричество активно завоевывало разные области человеческой деятельности, способствуя всестороннему промышленному и технологическому развитию современной цивилизации. Сегодня электрический ток является первостепенным энергетическим ресурсом во всех отраслях:

  • Промышленность и производство,
  • Сельское, коммунальное хозяйство,
  • Транспорт, информационные технологии,
  • В быту и на административных объектах.

Без электричества человек лишается возможности использования уже ставших обыденностью бытовых приборов, видео и аудиотехники, отопительного оборудования, охранных систем и компьютерной техники.

При каких условиях возможно получение электрического тока

Электрический ток образуется, если соблюдены следующие условия:

  • Есть источник энергии — турбина генератора, солнечная или аккумуляторная батарея;
  • Наличие в проводнике достаточного количества свободных частиц с зарядом;
  • Если источником питания создано электрическое поле, выполняющее функцию упорядочивания в цепи и проводниках движение зарядов;
  • Если сформирована замкнутая цепь с концами, подключенными к полюсам используемого источника электропитания.

Именно наличие всех вышеперечисленных условий является гарантией длительного протекания электрического тока в установленной цепи и стабильного питания подключенных к ней потребителей (бытовых или промышленных электроприборов).

Как проявляется электрический ток в зависимости от разных сред?

Электрическим током в различных веществах является совокупность движущихся частиц:

  • в металле — электроны;
  • в газах — ионы + электроны;
  • в вакуумном пространстве — электроны;
  • в полупроводниках — дырки, обеспечивающие электронно-дырочную проводимость;
  • в электрических плитах — ионы.

Ток может проявляться следующим образом:

  • происходит нагрев проводников (не относится к сверхпроводникам);
  • в проводниках изменяется химический состав и структура молекул;
  • возникает магнитное поле (относится ко всем видам проводников).

Классификация тока

При движении заряженных частиц внутри макроскопического тела энергия называется электрическим током проводимости. Если же наблюдается движение макроскопических заряженных тел (к примеру — дождевые капли, имеющие заряд), ток будет конвекционным.

Основная классификация электрического тока предусматривает использование формулировки постоянного и переменного тока. Также рассмотрим и другие виды:

  • Постоянный ток — его направление и величина остаются неизменными во времени. Такой ток бывает пульсирующим, однонаправленным или выпрямленным переменным.
  • Переменный ток — изменяется во времени, под этим обозначением подразумевается любой вид непостоянного тока.
  • Периодический ток — его мгновенные значения, как правило, повторяются в неизменной последовательности через разные временные промежутки.
  • Синусоидальный ток — является периодическим электротоком, выполняющим синусоидальную функцию времени. Это означает, что происходит изменение электростатического потенциала каждого конца в проводнике по отношению к потенциалу другого конца — с отрицательного на положительный и наоборот. Это способствует возникновению тока, который непрерывно изменяет свое направление и амплитудное значение. Квазистационарный ток — это переменный вид тока, который изменяется довольно медленно. Его мгновенные значения достаточно точно выполняют соответствуют законам постоянных токов (Ома, правилам Кирхгофа, и др.). Как и в постоянном токе, в квазистационарном имеется одинаковая сила тока на абсолютно всех сечениях электроцепи.
  • Высокочастотный ток — относится к переменному току, частота которого превышает несколько десятков герц. Если волна излучения имеет длину, близкую к размерам элементов, входящих в электрическую цепь, могут быть нарушены условия квазистационарности. Следовательно, для проектировки таких цепе необходим особый подход.
  • Пульсирующий ток — представляется периодическим электротоком, в котором за определенный период среднее значение равно нулю.
  • Однонаправленный ток — является током, постоянно сохраняющим свое первоначальное направление.

Характеристики

Классификация тока

Свойства электрического тока характеризуются следующими величинами:

Сила и плотность тока.

Силой тока характеризуется интенсивность, с которой движутся электрические заряды в проводнике, а также количество проходящих частиц через плоскости поперечных сечений проводников. Единица измерения — ампер A.

Плотность электрического тока является векторной величиной, где направление вектора соответствует направлению, в котором двигаются положительные заряды. Единица измерения — A/м2.

Величины используются для формулирования знаменитого закона Ома, где на определенном участке электрической цепи для выражения разницы потенциалов (или напряжения) используется соотношение: U=I*R (U-напряжение, I-сила тока, R-сопротивление).

Мощность

Работа электрических сил направлена против реактивного и активного сопротивлений. При пассивном сопротивлении происходит преобразование электроэнергии в тепловую. Электрическая мощность — это действие электричества в установленный промежуток времени. Единица измерения: ватт (Вт).

Частота

Эта характеристика указывает на изменение количества периодов (колебаний) за определенные единицы времени. Единица измерения — герц Гц. Один герц равняется одному колебанию в секунду. Промышленному току свойственна стандартная частота в 50 Гц.

Ток смещения

Это условное название, так как в нем заряд не переносится. В то же время, токи проводимости и смещения определяют зависимость от них магнитного поля. Явным примером является конструкция конденсатором: даже если между обкладками конденсационного устройства при зарядке/разрядке заряды никак не перемещаются, наблюдается протекание тока смещения через конденсатор, тем самым обеспечивая замыкание электрической цепи.

Лицензированная электролаборатория компании ТМ Электро проведёт качественные испытания Ваших электросетей.

Электрический ток: определение, единицы измерения, природа возникновения

Абрамян Евгений Павлович

Электрическим током называют направленное перемещение заряженных частиц, которое происходит под влиянием электрического поля.

Как образуется электрический ток?

Электрический ток появляется в веществе при условии наличия свободных (несвязанных) заряженных частиц. Носители заряда могут присутствовать в среде изначально, либо образовываться при содействии внешних факторов (ионизаторов, электромагнитного поля, температуры).

В отсутствие электрического поля их передвижения хаотичны, а при подключении к двум точкам вещества разности потенциалов становятся направленными – от одного потенциала к другому.

Количество таких частиц влияет на проводимость материала – различают проводники, полупроводники, диэлектрики, изоляторы.

В каким материалах возникает ток?

Процессы образования электрического тока в различных средах имеют свои особенности:

  1. В металлах заряд перемещают свободные отрицательно заряженные частицы – электроны. Переноса самого вещества не происходит – ионы металла остаются в своих узлах кристаллической решетки. При нагревании хаотичные колебания ионов близ положения равновесия усиливаются, что мешает упорядоченному движению электронов, – проводимость металла уменьшается.
  2. В жидкостях (электролитах) носителями заряда являются ионы – заряженные атомы и распавшиеся молекулы, образование которых вызвано электролитической диссоциацией. Упорядоченное движение в этом случае представляет собой их перемещение к противоположно заряженным электродам, на которых они нейтрализуются и оседают.

Катионы (положительные ионы) движутся к катоду (минусовому электроду), анионы (отрицательные ионы) – к аноду (плюсовому электроду). При повышении температуры проводимость электролита возрастает, так как растет число разложившихся на ионы молекул.

Абрамян Евгений Павлович

Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос

При низких температурах полупроводники приближаются по свойствам к изоляторам, так как электроны заняты ковалентными связями атомов кристаллической решетки. При увеличении температуры валентные электроны получают достаточную для разрыва связей энергию, и становятся свободными. Соответственно, чем выше температура – тем лучше проводимость полупроводника.

Посмотрите видео ниже с подробным рассказом об электрическом токе:

Возникновение тока в различных материалах

От чего зависит электрический ток?

На количество свободных заряженных частиц и на скорость их упорядоченного передвижения влияют следующие факторы:

  1. Материал проводящего вещества;
  2. Заряд и масса частиц;
  3. Величина разности потенциалов;
  4. Окружающая температура;
  5. Наличие дополнительных внешних факторов – магнитного поля, ионизирующего излучения.

В чем измеряется электрический ток? Единицы измерения

Для измерения электрического тока пользуются понятиями силы тока и его плотности. Измеряется сила тока специальным приборам – амперметром.

Васильев Дмитрий Петрович

Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос

Сила тока измеряется в Амперах (А) и представляет собой величину заряда, который проходит через поперечное сечение проводящего материала за единицу времени. Единица измерения силы тока называется Ампер (А). Один ампер приравнивают к отношению одного Кулона (Кл) к одной секунде.

Плотностью тока называют отношение силы тока к площади этого сечения. Единицей измерения измеряют в Амперах на квадратный метр (А/м2).

Ниже представлено видео о силе электрического тока в рамках школьной программы:

Постоянный и переменный ток

Электрический ток, который всегда имеет одно направление, называется постоянным. Если же периодически он устремляется в обратную сторону, а также меняет свою величину, то называется переменным.

Абрамян Евгений Павлович

Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос

Сети с переменным током используют для передачи энергии по проводам на значительные расстояния. Это связанно с тем, что переменный ток легко трансформируется по классам напряжения, т.е. для того чтобы передать большое количество энергии необходимо высокое напряжение и провод или кабель с небольшим сечением. Сети постоянного тока больше распространены в Европе, т.к. там нет больших расстояний как в России.

Генерация такого тока основана на явлении электромагнитной индукции. Происходит она за счет вращения магнита вокруг катушки с замкнутым проводящим контуром. Поэтому сила переменного тока при разворачивании ее по времени представляет собой синусоиду.

Постоянный электрический ток

Условия существования тока: 1. Наличие свободных зарядов. 2. Наличие электрического поля, т.е. разности потенциалов. Свободные заряды имеются в проводниках. Электрическое поле создается источниками тока

При прохождении тока через проводник он оказывает следующие действия:

  1. Тепловое (нагревание проводника током). Например: работа электрического чайника, утюга и т.д.).
  2. Магнитное (возникновение магнитного поля вокруг проводника с током). Например: работа электродвигателя, электроизмерительных приборов).
  3. Химическое (химические реакции при прохождении тока через некоторые вещества).Например: электролиз.
    Можно также говорить о
  4. Световом (сопровождает тепловое действие). Например: свечение нити накала электрической лампочки.
  5. Механическом (сопровождает магнитное или тепловое). Например: деформация проводника при нагревании, поворот рамки с током в магнитном поле).
  6. Биологическом (физиологическом). Например: поражение человека током, использование действия тока в медицине.

Основные величины, описывающие процесс прохождения тока по проводнику.

1. Сила тока I — скалярная величина, равная отношению заряда, прошедшего через поперечное сечение проводника, промежутку времени, в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.

В СИ единица силы тока устанавливается как основная по магнитному действию тока:если отрезки двух бесконечно длинных проводников с током по 1 м каждый, находящиеся в вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой 2 . 10 -7 Н, то говорят, что по ним течет ток 1 А (ампер).

Ток называют постоянным, если сила тока не меняется со временем. Для того чтобы ток через проводник был постоянным необходимо, чтобы разность потенциалов на концах проводника была постоянной.

Если заряженная частица q движется со скоростью v (скорость направленного (!) движения), то: .

Т.о. при увеличении площади сечения проводника скорость направленного движения частиц, создающих ток, уменьшается.

2. Плотность тока j — отношение силы тока к площади поперечного сечения проводника. Измеряется в А/м 2 . Вектор плотности тока сонаправлен с вектором напряженности поля.. Т.о. плотность тока не зависит от размеров проводника.

3. Напряжение U. Напряжение численно равно работе электрического поля по перемещению единичного положительного заряда вдоль силовых линий поля внутри проводника.

4. Электрическое сопротивление R — физическая величина, численно равная отношению напряжения (разности потенциалов) на концах проводника к силе тока, проходящего через проводник. Характеристика электрических свойств проводника (!). Для металлов и электролитов не зависит от напряжения и силы тока, а определяется только формой, размерами и материалом проводника.. Единица в СИ: — сопротивление проводника равно 1 Ом, если при разности потенциалов на его концах в 1 В, по нему протекает ток силой 1 А.

Проводимость — величина обратная сопротивлению. Единица в СИ — симменс.

Зависимость сопротивления от материала и размеров проводника.

ℓ — длина, S — площадь поперечного сечения, r — удельное сопротивление.Удельное сопротивление показывает, чему равно сопротивление проводника единичной длины и единичной площади поперечного сечения.

Единицы измерения: в СИ — Ом . м, практическая — .

Удельная проводимость — величина обратная удельному сопротивлению: .

Что такое электрический ток

Когда мы произносим словосочетание «электрический ток», то обычно имеем ввиду самые разные проявления электричества. Ток течет по проводам высоковольтных линий электропередач, ток вращает стартер и заряжает аккумулятор в нашем автомобиле, молния во время грозы — это тоже электрический ток.

Что такое электрический ток

Электролиз, электросварка, искры статического электричества на расческе, по спирали лампы накаливания течет ток, и даже в крохотном карманном фонарике через светодиод течет крохотный ток. Что и говорить о нашем сердце, которое также генерирует небольшой электрический ток, особенно это заметно во время прохождения процедуры ЭКГ.

В физике электрическим током принято называть упорядоченное движение заряженных частиц и в принципе любых носителей электрического заряда. Движущийся вокруг атомного ядра электрон — это тоже ток. И заряженная эбонитовая палочка, если держать ее в руке и двигать из стороны в сторону — также станет источником тока: не равный нулю заряд есть и он движется.

Все, что окружает человека, и он сам — это материальный мир, или материя, которая существует в различных формах. Одна из форм материи, из которой состоят все тела в природе (вода, различные металлы и т. д.), называется веществом.

Вещества, которые невозможно химическим путем разложить на отдельные химические элементы, называются простыми. Вещество, состоящее из нескольких элементов, называется сложным.

Все вещества состоят из мельчайших частиц-молекул, которые в свою очередь образуются из еще более меньших частиц, называемых атомами. В то же время в состав атомов входят другие, еще меньшие частицы, обладающие различными свойствами: ядро и электроны.

При бездействии сил электрического поля электроны в веществах находятся в беспорядочном движении. Происходит это потому, что во многих веществах, главным образом в металлах, электроны недостаточно сильно удерживаются ядром и могут свободно передвигаться от одного атома к другому.

Когда силы электрического поля начинают действовать, движение электронов принимает упорядоченное (направленное) состояние, возникает электрический ток. Отсюда электрическим током называется упорядоченное (направленное) движение электронов.

Аналоговый амперметр

При упорядоченном движении электроны движутся от того места, где имеется их избыток, туда, где ощущается их недостаток, от минуса к плюсу. Однако исторически в электротехнике условно принято считать, что ток идет от плюса к минусу.

Скорость распределения тока близка к скорости света — 300000 км в секунду. Это не значит, что такой скоростью обладает каждый электрон в отдельности.

Скорость электрона в проводнике составляет лишь доли сантиметра или миллиметра в секунду. Но в результате действия электрического поля ток, возникающий в одном конце провода, мгновенно вызывает прохождение тока по всему проводнику.

Аналогичное явление происходит, например, в трубе, заполненной водой, на одном конце которой находится насос. В момент подачи насосом воды в трубу давление, возникающее в воде, мгновенно передается вдоль трубы от одних частиц к другим. Вода приходит в движение — течет.

Однако частицы воды, добавляемые насосом, дойдут до противоположного конца трубы гораздо позже момента начала вытекания ее из трубы. Численно ток измеряется количеством электрических зарядов, которые проходят через поперечное сечение провода в одну секунду.

Физические аналогии между течением воды в системе водоснабжения и электрическим током: Электропроводка и трубопровод

Электропроводка и трубопровод: аналогии и различия

Постоянный ток

Ток течет по проводам бытовых электроприборов питающихся от розетки — электроны перемещаются туда-сюда 50 раз за секунду — это называется переменным током.

Высокочастотные сигналы внутри электронных приборов — это тоже электрический ток, поскольку электроны и дырки (носители положительного заряда) перемещаются внутри схемы.

Любой электрический ток порождает своим существованием магнитное поле. Вокруг проводника с током оно обязательно присутствует. Не существует магнитного поля без тока и тока без магнитного поля.

Даже если магнитного поля вокруг тока не наблюдается, это лишь значит что магнитные поля двух токов в момент наблюдения взаимно скомпенсированы, как в двужильном проводе любого электрического чайника — переменные токи в каждый момент направлены в противоположные стороны и текут параллельно друг другу — их магнитные поля друг друга нейтрализуют. Это называется принципом наложения (суперпозиции) магнитных полей.

Практически для существования электрического тока необходимо наличие электрического поля, потенциального или вихревого. Исключительно редко заряды перемещаются чисто механическим образом (как например в генераторе Ван Де Граафа — наэлектризованной резиновой лентой).

Генератор Ван Де Граафа:

Генератор Ван Де Граафа

Если электрический ток представляет собой направленное движение электрически заряженных частиц, то нужно найти ответ на вопрос, что приводит эти частицы в движение.

Причиной возникновения и поддержания электрического тока является электрическое поле. Величина этого поля определяется той работой, которую совершает сила электрического поля, перемещая 1 кулон электричества от одного конца проводника до другого.

Если рассмотреть некоторую замкнутую систему, в которой циркулирует вода, то в этой системе должен быть насос, который сообщает частицам воды энергию и заставляет их двигаться по трубопроводам. Частицы воды в процессе их циркуляции отдают полученную ими энергию (затрачивая ее, например, на преодоление сил трения). Когда же частицы воды вновь возвращаются к насосу, то в отличие от своего исходного состояния они обладают меньшей энергией.

Если уподобить электроны частицам воды, то аналогично можно представить себе процессы, протекающие в электрической цепи. В этом случае водяному насосу будет соответствовать некий «насос для электронов», или источник электрической энергии, а трубопроводам будут соответствовать провода. Следует особо подчеркнуть то обстоятельство, что в электрической цепи электроны не производятся, а просто в каждом проводнике имеются свободные высокоподвижные электроны.

Если на некотором участке цепи носители зарядов получают энергию, то принято говорить, что этот участок цепи — источник, развивающий электродвижущую силу (ЭДС).

Итак, в электрическом поле заряженная частица испытывает действие электрической силы, которая у источников тока называется ЭДС — электродвижущая сила. ЭДС измеряется в вольтах как и напряжение между двумя точками электрической цепи.

Электродвижущая сила является причиной, приводящей в движение электрические заряды, и определяется энергией, которая затрачивается на перемещение единичного электрического заряда.

В то же время источник энергии, перемещая заряд по замкнутой цепи, обладающей сопротивлением, совершает работу как на внутреннем участке цепи, так и на внешнем. Следовательно, на этих участках будут возникать напряжения, которые называются падением напряжения на определенном участке.

Поэтому понятие «электродвижущая сила» включает в себя также сумму падений напряжения на внешнем и внутреннем участках цепи источника электроэнергии.

Напряжение и ток — два электрические явления, взаимосвязанные друг с другом. Ток будет протекать по проводнику лишь при наличии разности потенциалов между концами проводника. Чем больше напряжение приложенное к потребителю — тем больший электрический ток это напряжение способно вызвать.

Переменное напряжение порождает в проводнике, к которому оно приложено, переменный ток, поскольку электрическое поле, приложенное к носителям заряда, будет в этом случае также переменным. Постоянное напряжение — условие существования в проводнике тока постоянного.

Высокочастотное напряжение (изменяющее свое направление сотни тысяч раз за секунду) также способствует переменному току в проводниках, но чем выше частота — тем меньше носителей заряда участвуют в создании тока в толще проводника, поскольку электрическое поле действующее на заряженные частицы вытесняется ближе к поверхности, и получается что ток течет не в проводнике, а по его поверхности. Это называется скин-эффект.

Вакуумные лампы

Электрический ток может существовать в вакууме, в проводниках, в электролитах, в полупроводниках и даже в диэлектриках (ток смещения). Правда в диэлектриках постоянного тока быть не может, поскольку в них заряды не имеют возможности к свободному перемещению, а способны лишь смещаться в пределах внутримолекулярного расстояния от своего первоначального положения под действием приложенного электрического поля.

Настоящий электрический ток всегда предполагает возможность свободного перемещения электрических зарядов под действием электрического поля. Смотрите — условия существования электрического тока.

В металлических проводниках электрический ток представляет собой движение «свободных» электронов, причем электроны движутся в направлении, противоположном условному направлению тока (т. к. за направление тока условно принято направления движения зарядов).

Электрический ток в газах представляет собой движение положительных ионов в одном направлении, а электронов (и отрицательных ионов) в другом направлении. Наконец, электрический ток в электролитах представляет собой движение существующих в жидкости положительных и отрицательных ионов в противоположных направлениях.

Сила электрического тока — количество электричества, прошедшее через все поперечное сечение тока за 1 сек., зависит, с одной стороны, от количества движущихся зарядов, а с другой — от средней скорости их регулярного движения.

В металлических проводниках количество движущихся зарядов (свободных электронов) чрезвычайно велико (порядка 10 23 в 1 см 3 ), но зато средняя скорость регулярного движения очень мала (при самых сильных токах, которые может выдержать проводник, эта средняя скорость имеет величину порядка сантиметра в секунду). Обычно несколько меньше количество движущихся зарядов в жидкостях и соответственно их средние скорости несколько больше.

В газах же вследствие их гораздо меньшей плотности и вследствие того, что только небольшая доля всех молекул газа оказывается ионизированной, количество движущихся зарядов гораздо меньше, но зато средние скорости движения электронов и ионов гораздо больше, чем в металлических проводниках, и достигают сотен и даже тысяч километров в секунду.

Понятие «электрический ток» ввел итальянский физик Алессандро Вольта. Электрический ток, или по его версии «электрический флюид» протекал в замкнутой цепи, соединяющей металлическим проводником крайние кружки вольтова столба.

«Вотльтов столб» (1800 г.) был первый источник электричества неэлектростатического типа (источник постоянного электрического тока), который состоял из чередующихся между собой медных и цинковых кружков, разделенных суконными прокладками, смоченными подкисленной водой или кислотой.

Вольтов столб

Существование неизменного высокого потенциала на вольтовом столбе было явлением для того времени совершенно новым. Это был первый химический источник электричества, потенциал которого был постоянен во времени и не требовал каких-либо приемов электризации для его возобновления.

Вольтов столб, составленный из большого количества кружков, имел на концах достаточно высокий потенциал, который можно было обнаружить не только измерительными приборами (в частности электроскопом), но и прикоснувшись к крайним кружкам руками. При этом ощущался сильный электрический удар, как от лейденской банки.

Открытие Вольты очень быстро распространилось в физике, стало предметом дальнейших исследований. В 1800 г. ученые-физики с помощью вольтова столба обнаружили электрохимическое действие тока, и в частности разложение под действием тока воды на кислород и водород. Опыты с гальваническими элементами позволили обнаружить, кроме химических, и другие новые свойства тока, в том числе его тепловое и магнитное действие.

Французский физик А. М. Ампер посвятил ряд своих работ изучению связи электрического тока и магнетизма. Он обнаружил, что два проводника с током испытывают взаимное воздействие — притяжение или отталкивание в зависимости от направления в них токов. Своими работами он заложил основы электродинамики.

Он предложил термин «электрический ток» и ввел понятие о его направлении, совпадающем с движением положительного электричества. В честь А. М. Ампера названа единица измерения электрического тока. Ампер является одной из семи основных единиц системы СИ.

Электрический ток обладает рядом свойств, которые могут быть эффективно использованы во многих практических случаях. К таким свойствам относятся трансформация простыми техническими средствами энергии электрического тока в энергию других видов (тепловую, световую, механическую, химическую) и возможность передачи ее на большие расстояния, быстрота распространения.

Электрический ток

Электрический ток — упорядоченное движение заряженных частиц в проводниках, вызываемый электрическим полем, созданным источником электрической энергии. Численное значение электрического тока I определяется как отношение скорости изменения заряда Δq ко времени t.

Электрический ток

Единица измерения тока — Ампер (A).

Электрический ток может быть постоянным или переменным.

При отсутствии электрического поля, электроны движутся между ионами кристаллической решетки хаотично. Такое движение называется тепловым движением. Суммарный вектор движения в этом случае равен нулю, т.е. тока нет.

Как только в проводящей среде возникает напряженность электрического поля, электроны, как солдаты, начинают двигаться в одном направлении, образуя электрический ток.

Исторически сложилось, что за положительное направление тока принимается движение положительных зарядов от плюса к минусу. Т.е. ток всегда течет от плюса к минусу! Однако, электроны, образующие ток, движутся к положительному потенциалу. Такое отличие в направлении движения связано знаний об электронах и их свойствах у ученых тех лет.

Направление тока при расчете электрических цепей обычно выбирается произвольно. Если при расчете величина тока (с учетом выбранного положительного направления) имеет знак плюс, то его направление совпадает с выбранным положительным направлением. В величина тока отрицательна, то реальное направление противоположно.

Лекции по ТОЭ

  • История электротехники
  • ТОЭ и электроника
  • Основные сведения
    • Основные определения
    • Топология цепи
    • Преобразование цепей
    • Элементы электрической цепи
    • Режимы работы
    • Постояный ток
    • Переменный ток
    • Постоянный ток
    • Переменный ток
    • Мощность
    • Магнитное поле
    • Постоянная МДС
    • Переменная МДС
    • Ферромагнитные материалы
    • Однофазный трансформатор
    • Трехфазный трансформатор
    • Постоянный ток
    • Переменный ток
    • Электропривод
    • Параметры
    • Уравнения
    • Схемы замещения
    • Фильтры
    • Холостой ход
    • Короткое замыкание
    • Характеристическое сопротивление
    • Коэффициент распространения
    • Передаточная функция
    • Обратные связи
    • Общие сведения
    • Классический метод
    • Операторный метод
    • Интеграл Дюамеля
    • Основная литература
    • Дополнительная литература
    • Сборники задач

    Что такое электрический ток?

    Открытия, связанные с электричеством, кардинально изменили нашу жизнь. Используя электрический ток как источник энергии, человечество сделало прорыв в технологиях, которые облегчили наше существование. Сегодня электричество приводит в движение токарные станки, автомобили, управляет роботизированной техникой, обеспечивает связь. Этот список можно продолжать очень долго. Даже трудно назвать отрасль, где можно обойтись без электроэнергии.

    В чём секрет такого массового использования электричества? Ведь в природе существуют и другие источники энергии, более дешевые, чем электричество. Оказывается всё дело в транспортировке.

    Электрическую энергию можно доставить практически везде:

    • к производственному цеху;
    • квартире;
    • на поле;
    • в шахту, под воду и т. д.

    Электроэнергию, накопленную аккумулятором, можно носить с собой. Мы пользуемся этим ежедневно, беря с собой сотовый телефон. Ни один другой вид энергии не обладает такими универсальными свойствами как электричество. Разве это не является достаточной причиной для того, чтобы глубже изучить природу и свойства электричества?

    Что такое электрический ток?

    Электрические явления наблюдались давно, но объяснить их природу человек смог относительно недавно. Удар молнии казался чем-то неестественным, необъяснимым. Странным казалось потрескивание некоторых предметов при их трении. Искрящаяся в темноте расчёска, после расчёсывания шерсти животных (например, кошки) вызвала недоумение, но подогревала интерес к этому явлению.

    Как всё начиналось

    Ещё древним грекам было известно свойство янтаря, потёртого о шерсть, притягивать некоторые мелкие предметы. Кстати, от греческого названия янтаря –«электрон» пошло название «электричество».

    Когда физики вплотную занялись исследованием электризации тел, они начали понимать природу подобных явлений. А первый кратковременный электрический ток, созданный человеком, появился при соединении проводником двух наэлектризованных предметов (см. рис. 1). В 1729 году англичане Грей и Уиллер открыли проводимость зарядов некоторыми материалами. Но определения электрического тока они не смогли дать, хотя и понимали, что заряды перемещаются от одного тела к другому по проводнику.

    Опыт с заряженными телами

    Об электрическом токе, как о физическом явлении заговорили лишь после того, как итальянец Вольта дал объяснение опытам Гальвани, а в 1794 году изобрёл первый в мире источник электричества – гальванический элемент (столб Вольта). Он обосновал упорядоченное перемещение заряженных частиц по замкнутой цепи.

    Определение

    В современной трактовке электрическим током называют направленное перемещение силами электрического поля заряженных частиц, Носителями зарядов металлических проводников являются электроны, а растворов кислот и солей — отрицательные и положительные ионы. Полупроводниковыми носителями зарядов являются электроны и «дырки».

    Для того чтобы электрический ток существовал, необходимо всё время поддерживать электрическое поле. Должна существовать разница потенциалов, поддерживающая наличие первых двух условий. До тех пор, пока эти условия соблюдены, заряды будут упорядоченно перемещаться по участкам замкнутой электрической цепи. Эту задачу выполняют источники электричества.

    Такие условия можно создать, например, с помощью электрофорной машины (рис. 2). Если два диска вращать в противоположных направлениях, то они будут заряжаться разноимёнными зарядами. На щётках, прилегающих к дискам, появится разница потенциалов. Соединив контакты проводником, мы заставим заряженные частицы двигаться упорядоченно. То есть электрофорная машина является источником электричества.

    Электрофорная машина

    Источники тока

    Первыми источниками электрической энергии, нашедшими практическое применение, были упомянутые выше гальванические элементы. Усовершенствованные гальванические элементы (народное название – батарейки) широко применяются по сей день. Они используются для питания пультов управления, электронных часов, детских игрушек и многих других гаджетов.

    С изобретением генераторов переменных токов электричество приобрело второе дыхание. Началась эра электрификации городов, а позже и всех населённых пунктов. Электрическая энергия стала доступной для всех граждан развитых стран.

    Сегодня человечество ищет возобновляемые источники электроэнергии. Солнечные панели, ветряные электростанции уже занимают свои ниши в энергосистемах многих стран, включая Россию.

    Характеристики

    Электрический ток характеризуется величинами, которые описывают его свойства.

    Сила и плотность тока

    Для описания характеристики электричества часто используют термин «сила тока». Название не совсем удачное, так как оно характеризует только интенсивность движения электрических зарядов, а не какую-то силу в буквальном смысле. Тем не менее, этим термином пользуются, и он означает количество электричества (зарядов) проходящего через плоскость поперечного сечения проводника. Единицей измерения силы тока в системе СИ является ампер (А).

    1 А означает то, что за одну секунду через поперечное сечение проводника проходит электрический заряд 1 Кл. (1А = 1 Кл/с).

    Плотность тока – векторная величина. Вектор направлен в сторону движения положительных зарядов. Модуль этого вектора равен отношению силы тока на некотором перпендикулярном к направлению движения зарядов сечении проводника к площади этого сечения. В системе СИ измеряется в А/м 2 . Плотность более ёмко характеризует электричество, однако на практике чаще используется величина «сила тока».

    Разница потенциалов (напряжение) на участке цепи выражается соотношением: U = I×R, где U – напряжение, I – сила тока, а R – сопротивление. Это знаменитый закон Ома для участка цепи.

    Мощность

    Электрическими силами совершается работа против активного и реактивного сопротивления. На пассивных сопротивлениях работа преобразуется в тепловую энергию. Мощностью называют работу, выполненную за единицу времени. По отношению к электричеству применяют термин «мощность тепловых потерь». Физики Джоуль и Ленц доказали, что мощность тепловых потерь проводника равна силе тока умноженной на напряжение: P = I× U. Единица измерения мощности – ватт (Вт).

    Частота

    Переменный ток характеризуется также частотой. Данная характеристика показывает, как за единицу времени изменяется количество периодов (колебаний). Единицей измерения частоты является герц. 1 Гц = 1 периоду за секунду. Стандартная частота промышленного тока составляет 50 Гц.

    Ток смещения

    Понятие «ток смещения» ввели для удобства, хотя в классическом понимании его нельзя назвать током, так как отсутствует перенос заряда. С другой стороны, интенсивность магнитного поля пребывает в зависимости от токов проводимости и смещения.

    Токи смещения можно наблюдать в конденсаторах. Несмотря на то, что при зарядке и разрядке между обкладками конденсатора не происходит перемещения заряда, ток смещения протекает через конденсатор и замыкает электрическую цепь.

    Виды тока

    По способу генерации и свойствам электроток бывает постоянным и переменным. Постоянный – это такой, что не меняет своего направления. Он течёт всегда в одну сторону. Переменный ток периодически меняет направление. Под переменным понимают любой ток, кроме постоянного. Если мгновенные значения повторяются в неизменной последовательности через равные промежутки времени, то такой электроток называют периодическим.

    Классификация переменного тока

    Классифицировать изменяющиеся во времени токи можно следующим образом:

    1. Синусоидальный, подчиняющийся синусоидальной функции во времени.
    2. квазистационарный – переменный, медленно изменяющийся во времени. Обычные промышленные токи являются квазистационарными.
    3. Высокочастотный – частота которого превышает десятки кГц.
    4. Пульсирующий – импульс которого периодически изменяется.

    Различают также вихревые токи, которые возникают в проводнике при изменении магнитного потока. Блуждающие токи Фуко, как их ещё называют, не текут по проводам, а образуют вихревые контуры. Индукционный ток имеет ту же природу что и вихревой.

    Дрейфовая скорость электронов

    Электричество по металлическому проводнику распространяется со скоростью света. Но это не означает, что заряженные частицы несутся от полюса к полюсу с такой же скоростью. Электроны в металлических проводниках встречают на своём пути сопротивление атомов, поэтому их реальное перемещение составляет всего 0,1 мм за секунду. Реальная, упорядоченная скорость перемещения электронов в проводнике называется дрейфовой.

    Если замкнуть проводником полюсы источника питания, то вокруг проводника молниеносно образуется электрическое поле. Чем больше ЭДС источников, тем сильнее проявляется напряжённость электрического поля. Реагируя на напряжённость, заряженные частицы вмиг принимают упорядоченное движение и начинают дрейфовать.

    Направление электрического тока

    Традиционно считают, что вектор электрического тока направлен к отрицательному полюсу источника. Но на самом деле электроны движутся к положительному полюсу. Традиция возникла из-за того, что за направление вектора было выбрано движение положительных ионов в электролитах, которые действительно стремятся к негативному полюсу.

    Электроны проводимости с отрицательным зарядом в металлах были открыты позже, но физики не стали менять первоначальные убеждения. Так укрепилось утверждение, что ток направлен от плюса к минусу.

    Электрический ток в различных средах

    В металлах

    Носителями тока в металлических проводниках являются свободные электроны, которые из-за слабых электрических связей хаотично блуждают внутри кристаллических решёток (рис. 3). Как только в проводнике появляется ЭДС, электроны начинают упорядочено дрейфовать в сторону позитивного полюса источника питания.

    Электрический ток в металлах

    В результате прохождения тока возникает сопротивление проводников, которое препятствует потоку электронов и приводит нагреванию. При коротком замыкании выделение тепла настолько сильное, разрушает проводник.

    В полупроводниках

    В обычном состоянии у полупроводника нет свободных носителей зарядов. Но если соединить два разных типа полупроводников, то при прямом подключении они превращаются в проводник. Происходит это потому, что у одного типа есть положительно заряженные ионы (дырки), а у другого – отрицательные ионы (атомы с лишним электроном).

    Под напряжением электроны из одного полупроводника устремляются для замещения (рекомбинации) дырок в другом. Возникает упорядоченное движение свободных зарядов. Такую проводимость называют электронно-дырочной.

    В вакууме и газе

    Электрический ток возможен и в ионизированном газе. Заряд переносится положительными и отрицательными ионами. Ионизация газов возможна под действием излучения или вследствие сильного нагревания. Под действием этих факторов возбуждаются атомы, которые превращаются в ионы (рис. 4).

    Электрический ток в газах

    В вакууме электрические заряды не встречают сопротивления, поэтому. заряженные частицы движутся с околосветовыми скоростями. Носителями зарядов являются электроны. Для возникновения тока в вакууме необходимо создать источник электронов и достаточно большой положительный потенциал на электроде.

    Примером может служить работа вакуумной лампы или электронно-лучевая трубка.

    В жидкостях

    Оговоримся сразу – не все жидкости являются проводниками. Электрический ток возможен в кислотных, щёлочных и соляных растворах. Иначе говоря – в средах, где имеются заряженные ионы.

    Если опустить в раствор два электрода и подключить их к полюсам источника, то между ними будет протекать электрический ток (рис. 5). Под действием ЭДС катионы устремятся к катоду (минусу), а анионы к аноду. При этом будет происходить химическое воздействие на электроды – на них будут оседать атомы растворённых веществ. Такое явление называют электролизом.

    Электроток в жидкостях

    Для лучшего понимания свойств электротока в разных средах, предлагаю рассмотреть картинку на рисунке 6. Обратите внимание на вольтамперные характеристики (4 столбец).

    Проводники электрического тока

    Среди множества веществ, лишь некоторые являются проводниками. К хорошим проводникам относятся металлы. Важной характеристикой проводника является его удельное сопротивление.

    Небольшое сопротивление имеют:

    • все благородные металлы;
    • медь;
    • алюминий;
    • олово;
    • свинец.

    На практике наиболее часто применяют алюминиевые и медные проводники, так как они не слишком дорогие.

    Электробезопасность

    Несмотря на то что электричество прочно вошло в нашу жизнь, не следует забывать об электробезопасности. Высокие напряжения опасны для жизни, а короткие замыкания становятся причиной пожаров.

    При выполнении ремонтных работ необходимо строго соблюдать правила безопасности: не работать под высоким напряжением, использовать защитную одежду и специальные инструменты, применять ножи заземления и т.п.

    В быту используйте только такую электротехнику, которая рассчитана на работу в соответствующей сети. Никогда не ставьте «жучки» вместо предохранителей.

    Помните, что мощные электролитические конденсаторы имеют большую электрическую емкость. Накопленная в них энергия может вызвать поражение даже спустя несколько минут после отключения от сети.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *